MetaSnake Products/Professional XGBoost Cohort + Consult

  • $1,999

Professional XGBoost Cohort + Consult

  • Course
  • 108 Lessons

6 weeks of professional tabular learning. Includes live Q&A. Homework and accountability. Includes private calls.

Contents

Getting Started

Creating a GitHub Project to Store Your Homework
Weekly Instructions and Success Tips for Your XGBoost Course

Week 1: Python & Pandas Review

Peer Review
00-Intro.mov
01-Classes.mov
02-Pipelines.mov
03-Functions-Parameters.mov
04-Lambda.mov
05-Lambda-Pandas.mov
06-Parameters.mov
07-Unpacking.mov
08-Assign.mov
09-Plotting-Intro.mov
10-Line-Plots.mov
11-Bar-Plots.mov
12-Histograms.mov
13-Scatter-Plots.mov
14-PCA.mov
15-Conclusion.mov

Week 1: Homework & Cheatsheet

01-Homework.ipynb
01-pypd.ipynb
01-python-pandas.pdf
GMT20240723-150046_Recording_640x360.mp4

Week 2: ML Fundamentals

201-Intro.mov
202-Regression.mov
203-Linear-Regression.mov
204-Tree-Models.mov
205-Feature-Engineering.mov
206-Pipelines.mov
207-Categorical-Data.mov
208-Missing-Data.mov
209-Python-Transformers.mov
210-Large-Pipelines.mov
211-Splitting-Data.mov
212-Conclusion.mov

Week 2: Notebooks

02-ml.ipynb
02-sklearn.pdf
02-Homework.ipynb
GMT20240730-150247_Recording_1920x1080.mp4

Week 3: Tuning Models

301-Intro.mov
302-Basic-Model.mov
303-Overfitting-Evidence-Classification.mov
304-Objectives-Cls.mov
305-XGB-Hyperparameters.mov
306-Stepwise-Tuning-Cls.mov
307-Stepwise-Decision-Tree.mov
308-Regression-Data.mov
309-Default-XGB-Regression.mov
310-Overfitting-Reg.mov
312-Stepwise-Tuning-Reg.mov
311-Objectives-Reg.mov
313-Conclusion.mov

Week 3: Notebooks

03-xgboost.ipynb
03-Homework.ipynb
03-hyperparams.pdf
GMT20240806-150352_Recording_1920x1080.mp4

Week 4: Model and Data Evaluation

402-Tuned-Classifier.mov
403-Classification-Metrics.mov
404-Confusion-Matrix.mov
405-ROC.mov
406-Precision-Recall-Curve.mov
407-Cost-Model.mov
408-Learning-Curve.mov
409-Missing-Values.mov
410-Duplicate-Values.mov
411-Outliers.mov
412-PCA.mov
413-Regression.mov
414-Correlation.mov
415-Residual-Plots.mov
416-Residual-Analysis.mov
417-Residual-Metrics.mov
418-Learning-Curve.mov
419-Missing-Values.mov
420-Duplicates.mov
421-Outliers.mov
422-PCA.mov
423-Conclusion.mov

Week 4: Notebooks

04-evaluation-quality.ipynb
04-evaluation.pdf
04-Homework.ipynb
GMT20240813-150123_Recording_1920x1080.mp4

Week 5: Interactions and Constraints

501-Load-Regression.mov
502-Feature-Importance.mov
503-SHAP.mov
504-PDP.mov
505-Monotonic-Constraints.mov
506-Classification.mov
507-Feature-Importance.mov
508-SHAP.mov
509-Monotonic-Constraints.mov
510-Conclusion.mov

Week 5: Notebooks

05-Homework.ipynb
05-shap-constraints.ipynb
05-SHAP.pdf
GMT20240820-150333_Recording_1920x1080.mp4

Week 6: Problematic Samples

601-Kfold.mov
602-PCA.mov
603-Dupes.mov
604-Sample-Weights.mov
605-Regression.mov
606-Kfold.mov
607-PCA.mov
608-Sample-Weights.mov

Week 6: Notebooks

06-Homework.ipynb
06-kfold.ipynb
06-kfold.pdf
GMT20240828-153553_Recording_1920x1080.mp4